Search results for "Matrix-assisted laser desorption electrospray ionization"
showing 7 items of 7 documents
A new interface to couple thin-layer chromatography with laser desorption/atmospheric pressure chemical ionization mass spectrometry for plate scanni…
2005
An interface to allow on-line qualitative and quantitative full-plate detection and analysis of compounds separated by thin-layer chromatography (TLC) is presented. A continuous wave diode laser is employed as a desorption source. Atmospheric pressure chemical ionization mass spectrometry ionizes and subsequently identifies the desorbed sample molecules. Besides direct laser desorption on untreated TLC plates, graphite particles were used as a matrix to couple in the laser power and improve the efficiency of desorption.
Production of negative osmium ions by laser desorption and ionization.
2010
The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs(+) ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionizat…
A laser ion source for trace analysis
1988
A laser ion source has been set up which is based on resonant stepwise excitation and ionization of atomic vapor confined in an ionization chamber. Using a pulsed copper vapor/dye laser system with a high repetition rate (6.5 kHz) one expects high efficiency and high selectivity for this new type of ion source. First test experiments with lead are reported.
Selective laser ionization of radioactive Ni-isotopes
1997
Abstract A chemically selective laser ion source based on resonance ionization of atoms in a hot cavity has been applied in the study of Ni-isotopes at the CERN-ISOLDE on-line isotope separator. Laser ionization enhanced the yields of long-lived Ni-isotopes almost four orders of magnitude when compared to the yields obtained with the surface ionization mode of the source. As a result, high yields of long-lived Ni-isotopes were obtained. Separation efficiencies of 0.3 and 0.8% were obtained for Ni produced in uranium-carbide, produced from uranium-di-pthalocyanine, and Ta-foil targets, respectively. Ni was found to be released very slowly from the present target and ion source combination.
Measurement of nanoparticle mass distributions by laser desorption/ionization time-of-flight mass spectrometry.
2011
In this paper, access to the mass distribution analysis of nanoparticles is described based on laser desorption/ionization and time of flight mass spectrometry. Two examples are given, demonstrating the accurate mass distribution analysis of nanoparticles fabricated both ex situ and in situ during the laser-assisted desorption process. The potentials and the limitations of the method are discussed, with special emphasis on carbonaceous clusters and molecules.
Laser preparation of bunched ion beams
1997
Abstract Laser ionization at ISOLDE is performed with high repetition laser beams in the ion source unit and for daughter elements with low repetition lasers synchronized with laser desorption from a secondary target. We are preparing an implementation of thermal adsorption followed by laser desorption and laser ionization in the target ion source unit of ISOLDE. The combination of resonance ionization with thermal bunching allows the preparation of bunched and chemically pure ion beams. Bunched ion beams of Mg or Ca are prepared for post-acceleration at REX-ISOLDE. In order to investigate the process of adsorption and pulsed laser desorption, experiments are performed with Ba vapour. In a …
Multi-color resonance ionization of laser ablated gadolinium at high laser power
2005
Abstract Spectroscopic and analytical properties of a trace analytical method using multi-step resonance ionization at high laser intensities (>kW/cm 2 ) have been investigated with gadolinium as a test element. Strongly saturated transitions are observed, which have been used for a temperature determination of the atoms in the laser ablated plume. Regimes of multi-step resonance ionization and multiphoton ionization could be distinguished. Analytical performances due to resonance enhancement and resulting discrimination against non-resonant background, precision in isotope ratio determination and overall detection efficiency are discussed.